THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH2040A

Solution to Homework 8

Compulsory Part

Sec. 6.1

(Sec 6.1 Q11) Q: Prove the parallelogram law on an inner product space V; that is show that

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$$
 for all $x, y \in V$

What does this equation state about paralleograms in \mathbb{R}^2 ?

Ans:

$$||x + y||^2 + ||x - y||^2 = ||x||^2 + 2Re\langle x, y \rangle + ||y||^2 + ||x||^2 - 2Re\langle x, y \rangle + ||y||^2$$
$$= 2||x||^2 + 2||y||^2.$$

(Sec 6.1 Q12) Q: Let $\{v_1, \dots, v_k\}$ be and orthogonal set, $\{a_1, \dots, a_k\}$ be scalars. Prove that

$$\left\| \sum_{i=1}^{k} a_i v_i \right\|^2 = \sum_{i=1}^{k} |a_i|^2 \|v_i\|^2.$$

Ans:

$$\left\| \sum_{i=1}^{k} a_i v_i \right\|^2 = \left\langle \sum_{i=1}^{k} a_i v_i, \sum_{i=1}^{k} a_i v_i \right\rangle = \sum_{i,j=1}^{k} a_i a_j \left\langle v_i, v_j \right\rangle = \sum_{i=1}^{k} |a_i|^2 \|v_i\|^2, \tag{1}$$

since if $i \neq j$, $\langle v_i, v_j \rangle = 0$.

(Sec 6.1 Q17) Q: Let T be a linear operator on an inner product space V, and suppose that ||T(x)|| = ||x|| for all x. Prove that T is one to one.

Ans: Let $x \in V$ such that T(x) = 0, then ||x|| = ||T(x)|| = 0, hence x = 0, so the kernel is $\{0\}$ hence T is one to one.

(Sec 6.1 Q18) Let V be a vector space over F, where $F = \mathbb{R}$ or $F = \mathbb{C}$, and let W be an inner product space over F with inner product $\langle \cdot, \cdot \rangle$. If $T: V \to W$ is linear, prove that $\langle x, y \rangle' = \langle T(x), T(y) \rangle$ defines an inner product on V if and only if T is one to one.

Ans:

 (\Rightarrow) : Suppose T(x) = T(y). We consider

$$\langle x - y, x - y \rangle' = \langle x, x \rangle' - 2Re\langle x, y \rangle' + \langle y, y \rangle'$$

= $||T(x)||^2 - 2||T(x)||^2 + ||T(y)||^2 = 0$.

Hence y = x.

 (\Leftarrow) : Linearity is trivial. Also it is trivial that $\overline{\langle x,y\rangle'}=\langle y,x\rangle'$. We now show that $\langle x,x\rangle'>0$ if $x\neq 0$. Since T is one to one hence its kernel is $\{0\}$. Hence $\langle x,x\rangle'=\langle T(x),T(x)\rangle=\|T(x)\|>0$ since $T(x)\neq 0$, and $\langle \cdot,\cdot\rangle$ is an inner product.

(Sec 6.1 Q22) Let β be a basis for V. $x = \sum_{i=1}^n a_i v_i$, $y = \sum_{i=1}^n b_i v_i$, define $\langle x, y \rangle = \sum_{i=1}^n a_i \bar{b_i}$.

- (a) Prove $\langle \cdot, \cdot \rangle$ is an inner product.
- (b) Prove if $V = \mathbb{R}^n$ or \mathbb{C}^n and β is the standard basis, then the definition above is the standard inner product.
- (a) Direct checking.
- (b) Let (\cdot,\cdot) denote the standard inner product. If $x=(a_1,\cdots,a_n), y=(b_1,\cdots,b_n)$, then $\langle x,y\rangle=\sum_{i=1}^n a_i\bar{b_i}=(x,y).$

Optional Part

Sec. 6.1

(Sec 6.1 Q01) Ans:

- (a) T.
- (b) T.
- (c) F. Not in the second component.
- (d) F. Consider 6.1 Q18.
- (e) F.
- (f) F.
- (g) F.
- (h) T.

(Sec 6.1 Q08) Ans:

- (a) Let a = b = c = d = 1, $x = (1, 1) \neq 0$, then $\langle x, x \rangle = 0$.
- (b) $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then $A \neq 0$, $\langle A, A \rangle = 0$.
- (c) Let $f = 1 \neq 0$ Then $\langle f, f \rangle = 0$

(Sec 6.1 Q19) Ans:

(a)

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, x + y \rangle + \langle y, x + y \rangle$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + \langle x, y \rangle + \overline{\langle x, y \rangle} + ||y||^2$$

$$= ||x||^2 + 2Re\langle x, y \rangle + ||y||^2.$$

(b)

$$||x|| \le ||x - y|| + ||y||$$

 $||y|| \le ||x - y|| + ||x||$

Together we have the desired inequality.

(Sec 6.1 Q20) Ans:

- (a) Direct checking.
- (b) Direct checking.

(Sec 6.1 Q21) Ans:

- (a) Direct checking.
- (b)

$$A_1 + iA_2 = B_1 + iB_2$$

$$A_1 - B_1 = i(A_2 - B_2)$$

$$(A_1 - B_1)^* = (i(A_2 - B_2))^*$$

$$A_1 - B_1 = -i(A_2 - B_2)$$

Hence

$$A_1 - B_1 = -(A_1 - B_1)$$

 $A_1 - B_1 = 0$
 $A_1 = B_1$.

and hence $A_2 = B_2$.

(Sec 6.1 Q23) Ans:

(a)

$$\langle x, Ay \rangle = \sum_{i=1}^{n} x_i \overline{(Ay)_i}$$

$$= \sum_{i=1}^{n} x_i \sum_{j=1}^{n} \overline{A_{ij}y_j}$$

$$= \sum_{j=1}^{n} \sum_{i=1}^{n} A_{ji}^* x_i \overline{y_j}$$

$$= \langle A^* x, y \rangle.$$

(b)

$$\langle x, Ay \rangle = \langle A^*x, y \rangle = \langle Bx, y \rangle \implies \langle A^*x - Bx, y \rangle = 0$$

Hence $A^* = B$.

(c)

$$(Q^*Qx)_i = \sum_{j=1}^n (Q^*Q)_{ji} x_i$$

$$= \sum_{j=1}^n \sum_{k=1}^n Q_{jk}^* Q_{ki} x_i$$

$$= \sum_{j=1}^n \langle Q_i, Q_j \rangle x_i$$

$$= \sum_{j=1}^n \delta_{ij} x_i = x_i$$

(d) Let β' be the standard basis, then we have

$$[T]_{\beta} = [I]_{\beta'}^{\beta} [T]_{\beta'} [I]_{\beta'}^{\beta'}$$
$$= Q^* A Q,$$

So

$$[T]_{\beta}^* = Q^*A^*Q = [IUI]_{\beta} = [U]_{\beta}.$$